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The term “hacking” has come to signify breaking into a computer system. Lawmakers crafted              1

penalties for hacking as early as 1986 in supposed response to the movie War Games three                
years earlier in which a teenage hacker gained access to a military computer and nearly               
precipitated a nuclear war. Today a number of local, national, and international laws seek to               
hold hackers accountable for breaking into computer systems to steal information or disrupt             
their operation; other laws and standards incentivize private firms to use best practices in              
securing computers against attack. 
  
The landscape has shifted considerably from the 1980s and the days of dial-ups and              
mainframes. Today most people carry around the kind of computing power available to the              
United States military at the time of War Games in their pockets. People, institutions, and even                
everyday objects are connected via the Internet. Driverless cars roam highways and city streets.              
Yet in an age of smartphones and robots, the classic paradigm of hacking, in the sense of                 
unauthorized access to a protected system, has sufficed and persisted. 
  
All of this may be changing. A new set of techniques, aimed not at breaking into computers but                  
at manipulating the increasingly intelligent machine learning models that control them, may            
force law and legal institutions to reevaluate the very nature of hacking. Three of the authors                
have shown, for example, that it is possible to use one’s knowledge of a system to fool a                  
machine learning classifier (such as the classifiers one might find in a driverless car) into               
perceiving a stop sign as a speed limit. Other techniques build secret blind spots into learning                
systems or reconstruct the private data that went into their training. 
  
The unfolding renaissance in artificial intelligence (AI), coupled with an almost parallel discovery             
of its vulnerabilities, requires a reexamination of what it means to “hack,” i.e., to compromise a                
computer system. The stakes are significant. Unless legal and societal frameworks adjust, the             
consequences of misalignment between law and practice include (i) inadequate coverage of            
crime, (ii) missing or skewed security incentives, and the (iii) prospect of chilling critical security               
research. This last one is particularly dangerous in light of the important role researchers can               
play in revealing the biases, safety limitations, and opportunities for mischief that the             
mainstreaming of artificial intelligence appears to present. 
  
The authors of this essay represent an interdisciplinary team of experts in machine learning,              
computer security, and law. Our aim is to introduce the law and policy community within and                

1 We acknowledge that there is a second, classic, definition of hacking, which refers to deep technical 
explorations of computer systems without malice (https://tools.ietf.org/html/rfc1392). This definition 
contrasts hacking to “cracking.” However, we use the more contemporary definition of hacking here. 
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beyond academia to the ways adversarial machine learning (ML) alter the nature of hacking and               
with it the cybersecurity landscape. Using the Computer Fraud and Abuse Act of 1986—the              
paradigmatic federal anti-hacking law—as a case study, we mean to evidence the burgeoning             
disconnect between law and technical practice. And we hope to explain what is at stake should                
we fail to address the uncertainty that flows from the prospect that hacking now includes               
tricking. 
  
The essay proceeds as follows. Part I provides an accessible overview of machine learning.              
Part II explains the basics of adversarial ML for a law and policy audience, laying out the set of                   
techniques used to trick or exploit AI as of this writing. This appears to be the first taxonomy of                   
adversarial ML in the legal literature (though it draws from prior work in computer science). 
  
Part III describes the current anti-hacking paradigm and explores whether it envisions            
adversarial ML. The question is a close one and the inquiry complex, in part because our                
statutory case study, the CFAA, is broadly written and has been interpreted expansively by the               
courts. We apply the CFAA framework to a series of hypotheticals grounded in real events and                
research and find that the answer is unclear. 
  
Part IV shows why this lack of clarity represents a concern. First, courts and other authorities                
will be hard-pressed to draw defensible lines between intuitively wrong and intuitively legitimate             
conduct. How do we reach acts that endanger safety—such as tricking a driverless car into               
mischaracterizing its environment—while tolerating reasonable anti-surveillance      
measures—such as makeup that foils facial recognition—which leverage similar technical          
principles, but dissimilar secondary consequences? 
  
Second, and relatedly, researchers interested in testing whether systems being developed are            
safe and secure do not always know whether their hacking efforts may implicate federal law.               2

Here we join a chorus of calls for the government to clarify the conduct it seeks to reach and                   
restrict while continuing to advocate for an exemption for research aimed at improvement and              
accountability. Third, designers and distributors of AI-enabled products will not understand the            
full scope of their obligations with respect to security. We advance a normative claim that the                
failure to anticipate and address tricking is as irresponsible or “unfair” as inadequate security              
measures in general. 
  
We are living in world that is not only mediated and connected, but increasingly intelligent. And                
that intelligence has limits. Today’s malicious actors penetrate computers to steal, spy, or             
disrupt. Tomorrow’s malicious actors may also trick computers into making critical mistakes or             
divulging the private information upon which they were trained. We hope this interdisciplinary             
project begins the process of reimagining cybersecurity for the era of artificial intelligence and              
robotics.  

2 Our focus is on the CFAA but, as we acknowledge below, other laws such as the Digital Millennium 
Copyright Act also establish penalties for unauthorized intrusion into a system. The DMCA, however, has 
an exception for security research.  
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Part I: Machine Learning 
  
Artificial intelligence (AI) is probably best understood as a set of techniques aimed at              
approximating some aspect of human or animal cognition. It is a long-standing field of inquiry               
that, while originating in computer science, has since bridged many disciplines. Of the various              
techniques that comprise artificial intelligence, a 2016 report by the Obama White House             
singled out machine learning (ML) as particularly impactful. ML indeed underpins many of             3

today’s most visible applications grouped under the umbrella term AI. It refers to the ability of a                 4

system to improve performance by refining a model. The approach typically involves spotting             
patterns in large bodies of data that in turn permit the system to make decisions or claims about                  
the world. The process is divided into two stages: training and inference. During training,              
available data is used to generate a model orientated toward a particular objective such as fraud                
detection. Next, during inference, the trained model is deployed to make claims or predictions              
about previously unseen data, such as new bank statements.  
  
A.      Typology of Machine Learning 
  
There are three prevalent approaches to machine learning in the literature: 
  
Supervised learning algorithms: In this scenario, there is a large set of labeled input/output              
pairs (e.g., images and labels for the objects in them). The goal of such algorithms is to predict                  
the labels for data points that the model has not seen. The classic example of such systems are                  
computer vision classifiers that assign a single category out of a fixed set to an image (e.g.,                 
“malignant” or “benign” for scans of tumors). However, more sophisticated models exist where             
the labels are descriptions of the locations of certain objects in an image (and not just their                 
categories). For instance, a car detector can take in an entire scene and identify the position of                 
cars in that image (in terms of pixel coordinates). 
 
Reinforcement learning: In this scenario, ML models act as semi-autonomous agents that            
choose actions based on reward signals from their environment. During training, the models are              
updated in order to learn policies that describe what to do in every state. During inference, they                 
apply those policies to choose how the agent they are controlling moves or otherwise changes               
its state. For instance, in financial trading, the state could be the portfolio of a trader and the                  
“move” a sequence of buy and sell actions involving items in the trader’s portfolio. Such a                
model could be trained on past transactions in the financial markets and the associated results. 
  
Unsupervised learning algorithms: Here, there is no explicit labeling of the training data. The              
goal is to uncover interesting patterns that humans may not have spotted or even be able to                 
interpret easily. A common application is “clustering” where groups of similar objects are             

3 https://obamawhitehouse.archives.gov/blog/2016/12/20/artificial-intelligence-automation-and-economy.  
4 We are not committed in any deep sense to the idea that ML falls within, rather than adjacent to, AI. 
However, we adopt for purposes of this essay the conventional frame that ML is a form of AI.  
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bunched together. “Similar” is defined based on the application but is generally a mathematical              
computation of some difference. An instance of an unsupervised learning system might be a              
bank observing credit card transactions that fall into distinct clusters—say, those that            
high-earning homeowners make as compared to those by high-risk individuals. A fraudulent or             
otherwise peculiar transaction would then not fall into any cluster nicely, thus being detected by               
the system. 
  
There are other types of machine learning algorithms, including some that do not fit neatly into                
these categories. However, most practical machine learning deployed on real systems today fall             
into the first and second categories. 
  
Machine learning is often associated with a particular instantiation known as “deep learning.”             
Deep learning involves the distillation of information presented in a complex format (for             
instance, pixels) down to easily interpretable labels (for instance, an object category) by layering              
the processing of information. For example, a first layer of an image processing deep learning               
algorithm might attempt to detect boundaries between objects in an image. Even though that              
information being output by the first layer might be somewhat distilled, it still will not be that                 
useful to the computer. Hence, subsequent layers reduce the complexity more and more until              
finally the model outputs a simple concept, such as the category of the object in the image. 
  
By itself, deep learning is not a new concept and indeed many machine learning models before                
deep learning attempted to do just that with layers handcrafted by researchers. For instance, to               
classify faces, scientists would try to define which regions of the face were important for               
predicting identity by specifying how to process the images. One of deep learning’s innovations              
was to let each computational layer adjust itself automatically based on the training data. This is                
achieved by mathematically defining how close the output of the final computational layer is to               
what is desired and how to update the intermediate layers so that the overall output gets closer                 
to the target. Thus, with enough time, the model will strive to get better at outputting the label                  
“dog” for all images of dogs.  
 
Furthermore, the internals of deep learning models are represented using matrix multiplications.            
Computer scientists had been studying how to make those operations execute quickly and in              
parallel for many decades before deep learning took off. Thus, deep learning also has the               
benefit of naturally parallelizing computations at a time when the performance of non-parallel             
computing power is flattening out. 
  
B.      Training Data 
  
Whether supervised or unsupervised, deep or shallow, a commonality across all machine            
learning approaches is the centrality of training data. Training data can be provided to machine               
learning algorithms in many different ways. Many datasets are created in laboratories where             
conditions can be specified precisely. For example, when building a face recognition training             

4 



DRAFT - We Robot 2018 

set, taking images in a lab could provide exact details on the position of the subject’s head, the                  
camera exposure settings and lighting conditions, and other such parameters. 
  
However, this is not always practical, especially for data-hungry models, such as today’s deep              
learning frameworks. These algorithms need many more precisely-labeled examples than          
individual researchers could possibly generate. Thus, in many applications, the training set and             
its labels are automatically generated or crowdsourced. For instance, to generate an image             
recognition dataset, one might simply select all images that come up in a Google Image search                
for the categories of interest. If a researcher wanted to build a classifier of car models, they                 
would search for each model on Google Images and download the resulting pictures.             
Alternatively, one could collect a lot of images with unknown labels and then ask volunteers               
online to label them. A third option is to attempt to infer the labels from user activity. For                  
example, to generate a text prediction dataset from words typed in a keyboard, one might               
simply look at what a user chooses to type next.  
  
Sources of training datasets turn out to be extremely important in channeling the social impacts               
of ML. Whether created synthetically in a lab, purchased from a vendor, or scraped from the                
internet, the dataset a model encounters during its training phase will dictate its performance at               
the application or interference phase. If the training data is historically sourced, it will contain               5

the biases of history. It the training data is not representative of a particular population, the                
system will not perform well for that population. A generation of contemporary scholars are              
adding to the existing literature around machine bias. As our focus is on computer security, we                6

refer to the conversation here only to acknowledge its importance.  
  
C.      Measuring Performance 
  
In academia, it is common practice to compare the performance of machine learning algorithms              
along standardized benchmarks. For example, for the task of identifying objects in images,             
researchers have collected millions of images and chosen 1000 object types to construct the              
ImageNet benchmark. 
  
Measuring performance is not a straightforward process, as many different scores exist that             
vary significantly depending on application. In fact, what we think of as “accuracy” in common               
speech (i.e., the percentage of correct answers an algorithm produces to a set of questions) is                
often a very poor metric of how well a model performs. Having a system that is accurate, is not a                    
victory unless the system is aiming for the correct target. For example, an accuracy metric is                
especially bad in medical diagnosis systems as it does not account for how often a disease                
appears in the population. Thus, a naive algorithm for a rare disease that simply classifies every                
case it sees as “not sick” would score a pretty high accuracy as most cases it sees will indeed                   

5 See Amanda Levendowski, How Copyright Law Can Fix Artificial Intelligence’s Implicit Bias Problem, __ 
Washington Law Review __ (forthcoming 2018). 
6  E.g., Conference on Fairness, Accountability, and Transparency (FAT*), 
https://fatconference.org/index.html. 
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be not sick (the disease is rare). However, this would obviously be a very bad algorithm as it will                   
never predict when a person really has the disease. Thus, machine learning researchers have              
to be careful to choose metrics that capture this and similar tradeoffs in performance and make                
it hard for models to “cheat.” It should be noted that even these metrics are often heuristics and                  
there is no perfect transferability to real-world “usefulness” of the model. 
  
Another important aspect of ML models is that it is very easy to make them “overfit.” One can                  
broadly think of this as “cheating” on the chosen performance metric---overfit models achieve             
good performance scores but fail to generalize in real scenarios. A trivial way to cause               
overfitting is to memorize all the labels for images in a training set and then reproduce those                 
labels when asked for any particular image’s prediction. In this case, the algorithm would              
achieve really good accuracy on its training set but will be completely useless for any practical                
application. ML researchers guard against this by holding out a test set that the model has                
never seen in order to evaluate its realistic performance. However, there are more subtle ways               
of causing overfitting and sometimes it is not even intentional. For instance, a model that is                
given only blue flowers to look at during training and only tested on blue flowers might focus                 
only on the color and thus learn to classify only blue objects as flowers. Since the test set                  
contains no flowers of other colors, the model would score well but fail in the real world where                  
non-blue flowers exist. Thus, researchers need to ensure that their training and test sets are               
properly balanced and include a large enough sample of relevant features. One way to detect               
overfitting is for the benchmark holders to keep the evaluation dataset hidden from the model               
developers until a final version of the model is presented. 
  
Until recently, there were few good machine learning algorithms that could rival human             
performance on common benchmarks. For instance, identifying what object is in a picture or              
finding out who a facial image belongs to used to be highly challenging for computers. However,                
a confluence of greater availability of large datasets, advances in parallel computing, and             
improvements in processing power helped deep learning models achieve human-level or better            
performance. Subsequently, researchers applied deep learning in a host of other areas, which             
led to the past decade’s explosion in deep learning applicability and use. 
  
Unfortunately, the power to perform well comes at a cost. Due to the large number of                
parameters, deep learning models are hard to interpret. While it is trivial to look at the matrices                 
their training has generated, it is not clear what they are computing individually or as a whole.                 
Therefore, it is not easy to explain what any intermediate layer is doing or how it is contributing                  
to the overall prediction. This remains an active area of computer science research. 
  
Part II: Adversarial Machine Learning 
  
There are many ways machine learning algorithms can fail naturally. A relatively new area of               
study evidences the ways people can cause ML to make predictable errors by exploiting system               
blind spots. Researchers to date have identified three main approaches to “adversarial”            
machine learning. These include: (1) fooling a trained classifier or detector into            
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mischaracterizing an input in the inference phase, (2) skewing the training phase to produce              
specific failures during inference, and (3) extracting the (sometimes sensitive) underlying data            
from a trained model.  We discuss each of these approaches in turn. 7

 
A.      Adversarial ML since 2013 
  
Germinal work from 2013 by Szegedy et al. discovered that, in the domain of image recognition,                
changing only a few pixels of an image in a particular way causes the model interpreting that                 
image to predict a wrong label. Later work showed that even more sophisticated models were               8

vulnerable to such human-imperceptible “adversarial examples” and provided powerful         
algorithms to find these malicious inputs. Researchers also established that attackers have            
some latitude in picking how the model they target will misbehave. An adversary could, for               
example, select a target class to send the model’s prediction of the adversarial inputs to. For                
instance, an adversary could make a warning label appear as a particular message of their               
choosing such as an expiration date.  
  
Other computer scientists discovered that adversarial examples also transfer across models           
performing the same task. Thus, attackers could generate malicious inputs for a proxy classifier              
and use them to cause failure in another similar system. For instance, Liu et al. demonstrated                
that one could take images of various objects, add adversarial noise for a publicly available               
model, send them to a commercial, image recognition service with unknown internals, and             
cause that commercial model to predict “veil” for an image of a dog. Finally, a growing body of                  9

work is focusing on how to produce physical adversarial examples. For instance, two recent              
high-profile papers demonstrated that wearing specifically crafted glasses can trick face           
recognition systems and that applying adversarial stickers to a road sign can cause the sign to                10

be misinterpreted by an autonomous-vehicle’s image classifier.  11

  
Note that the attacks discussed so far happen after the model is trained and after it has been                  
deployed; i.e., at inference time. The attacker can execute those attacks without interfering with              
the training procedure, by simply presenting the model with modified inputs. However, an             
attacker needs to know the precise internals of the model being targeted or at least those of a                  
similar model. In the latter case, the attacker could make use of the fact that adversarial                

7 Papernot, Nicolas, et al. "Towards the science of security and privacy in machine learning." 3rd IEEE 
European Symposium on Security and Privacy, London, UK. 
8 Szegedy, Christian, et al. "Intriguing properties of neural networks." arXiv preprint arXiv:1312.6199 
(2013). 
9 Liu, Yanpei, et al. "Delving into transferable adversarial examples and black-box attacks." arXiv preprint 
arXiv:1611.02770 (2016). 
10 Sharif, Mahmood, et al. "Accessorize to a crime: Real and stealthy attacks on state-of-the-art face 
recognition." Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications 
Security. ACM, 2016.  
11 Evtimov, Ivan, et al. "Robust physical-world attacks on machine learning models." arXiv preprint 
arXiv:1707.08945 (2017). [update cite] 
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examples generated for similar models transfer to generate malicious inputs for an available             
model and attack a hidden one.  
  
Another set of attacks has focused on interfering with model training. An adversary who could               
tamper with the training data can, in theory, compromise the model in any arbitrary way. For                
instance, the adversary could label all pictures of rabbits in the training set as pictures of dogs.                 
A model will then naturally learn that dogs look like rabbits. Similarly, the adversary could be                
more subtle and train the model so that every picture of a rabbit with a particular patch of hair                   
gets classified as a dog. However, the adversary need not control the training set or even its                 
labels to “backdoor” an error into the model in this way. One recent work demonstrated that an                 
adversary with full access to the trained model only, i.e., white-box access, can build in a “trojan                 
trigger.” This trigger would only cause misclassification if it is presented to the model, but will                12

not otherwise impact the performance of the model. This could become problematic for models              
that are distributed online or are fully trained by a third party as a service. 
  
A third type of attack on deep learning models may seek to compromise the privacy of data                 
contained within the training set. In this type of attack, an adversary needs to obtain the full                 13

model (its internal structure and weights). The attacker can then seek to either infer membership               
of particular individuals or reconstruct the training data. For instance, a naive text prediction              
model that may be incorporated in a smartphone keyboard could be inverted to extract sensitive               
data the user has typed in the past, such as a Social Security Number, a Date of Birth, or                   
private messages in an otherwise end-to-end encrypted messaging app such as Signal. It is              
generally possible to protect against such attacks by employing a mathematical technique            
known as differential privacy. At a high level, this technique allows you to add noise to the data                  14

in a way that preserves its useful properties for the whole dataset but makes it hard for                 
adversaries to reveal information about individual members. However, research is still ongoing            
on the performance tradeoffs when employing this protective technique. 
  
B.      Limitations of Adversarial ML 
  
It is important to acknowledge that most applications of adversarial machine learning today are              
limited to academic proofs of concept and do not necessarily reflect current vulnerabilities in              
deployed systems. In the case of adversarial examples, it is more than likely that deployed               
systems employ some pre- or post-processing to their models such that adversarial examples             
can be detected or filtered out (although no defense has worked to date). In addition, no                
adversarial examples have been shown that defeat multiple different models at the same time.              
For instance, a self-driving car that perceives adversarial stop signs that an image classifier              
mistakes for speed limit signs might still detect the sign correctly via its LiDAR technology. 

12 Liu, Yingqi, et al. "Trojaning attack on neural networks." (2018). 
13 See Shokri, Reza, et al. "Membership inference attacks against machine learning models." 2017 IEEE 
Symposium on Security and Privacy (SP) for one example. 
14 Fredrikson, Matthew, et al. "Privacy in Pharmacogenetics: An End-to-End Case Study of Personalized 
Warfarin Dosing." USENIX Security Symposium. 2014. 
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Furthermore, the most powerful attacks occur for now only with full “white box” knowledge of the                
models that are targeted. This might be too much to assume since many models are likely to                 
remain proprietary. A lot of computer science research also points out that such full access is                
not necessary to mount an attack because adversarial examples designed for one model can              
often attack similar, unknown models as well. However, those attacks that do transfer across              
models generally include much higher distortions, distortions that might be noticeable to            
humans. Similar limitations exist for model inversion attacks.  
  
While the space of attacking machine learning models is still technologically young, we later in               
the paper present several case studies that might be close to actualization in the near future.                
We do not believe that adversarial tampering with machine learning models is less of a threat                
today than malicious programs were to early operating systems. It is likely that the attackers’               
technology will advance and the time to think about defenses and the possible implications for               
our policy framework is now. 
 
Part III: Anti-Hacking Laws 
 
Legislation often reacts to specific threats or harms. The Computer Fraud and Abuse Act              
(CFAA) is a good example. According to popular lore, President Reagan saw the movie War               15

Games and met with his national-security advisers the next day to discuss America’s cyber              
vulnerabilities. The CFAA is said to be the result of their deliberations. Enacted, at any rate, in                 
1986, the CFAA aimed to combat computer-related crimes. Since its implementation, the CFAA             
has been the nation’s predominant anti-hacking law. While drafted to combat traditional            
computer hacking, “the CFAA has evolved into a behemoth of a federal felony statute.” This               16

Part lays out the statutory definitions that the CFAA relies on for applicability, e.g., what is a                 
“protected” computer, etc., but a theme throughout CFAA’s actual usage shows that, “almost             
anything with at least a microchip and some relation to interstate commerce is a protected               
computer and open to CFAA prosecution.”  17

 
A. CFAA Statutory Language 
 
The CFAA is designed to be disincentive to the compromising of “protected computers” on              
threat of prosecution or civil lawsuit. A computer is any “electronic, magnetic, optical,             18

electrochemical, or other high speed data processing device performing logical, arithmetic, or            
storage functions, and includes any data storage facility or communications facility directly            
related to or operating in conjunction with such device.” The CFAA specifically excludes from its               

15 See, Obie Okuh, Comment, When Circuit Breakers Trip: Resetting The CFAA To Combat Rogue 
Employee Access, 21 Alb. L.J. Sci. & Tech. 637, 645 (2011).  
16 Matthew Ashton, Note, Debugging The Real World: Robust Criminal Prosecution In The Internet of 
Things, 59 Ariz. L. Rev. 805, 813 (2017).  
17 Id.  
18 Computer Fraud and Abuse Act, 18 U.S.C.A. § 1030 (2008).  
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ambit, “automated typewriters or typesetter, a portable hand-held calculator, or other similar            
device.”  
 
Protected computers are computers “exclusively for the use of a financial institution or the              
United States Government, or, in the case of a computer not for such use, used by or for a                   
financial institution or the United States Government and the conduct constituting the offense             
affects that use by or for the financial institution of the Government.” The CFAA also protects                
any computer, whether or not connected to the government, “which is used in or affecting               
interstate or foreign commerce or communication, including a computer located outside the            
United States that is used in a manner that affects interstate or foreign commerce or               
communication of the United States.” The courts have deferred to the government on the former               
definition. The latter definition encompasses seemingly any computer with connections to the            
United States but carries with it certain limitations around damages discussed below.  
 
The CFAA applies to both external and internal actors trying to compromise protected             
computers. External actors incur liability when they “intentionally access a [protected] computer            
without authorization.” Internal persons face liability if they already have access to a protected              
computer, but use the system in such a way that “exceeds [their] authorized access.” Generally               
an insider would be a current or former employee. However, as we will see, the language of                 
exceeding authorized access has also been brought to bear by companies on users who persist               
in violating a terms of service despite being warned against it.  
 
Importantly for our purposes, the CFAA prohibits not only “accessing” a computer to “obtain”              
information, but also “knowingly cause[ing] the transmission of a program, information, code, or             
command, and as a result of such conduct, intentionally causes damage . . . to a protected                 
computer,” as long as this conduct “causes damage without authorization.” Thus, for example,             
code that encrypts a hard drive or corrupts data, or a botnet attack that shuts down a server,                  
can violate the CFAA even though no information has been obtained as such. There are               
additional ways to violate the CFAA involving espionage, extortion, and trafficking in passwords.             
However, by the terms of the statute, there is no liability for the design or manufacture of                 
hardware or software with vulnerabilities.  
 
CFAA has both a criminal and civil component, meaning of course that individuals and              
companies can sue for a violation. The criminal component is tiered, with penalties as high as                
20 years imprisonment for repeated offenses or offenses that threaten death or bodily injury.              
Attacking a government computer is a per se violation if the computer is being used “in                
furtherance of the administration of justice, national defense, or national security.” Otherwise,            
the defendant must do at least $5,000 in aggregate damages, harm medical equipment,             
threaten public safety or health, injure someone, or target many computers to be liable either               
criminally or in civil court.  
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B. CFAA Interpretation 
 
The CFAA’s statutory text leaves much room for hypothesizing how these broad-definitional            
parameters apply to facts on the ground. A series of well-publicized cases help define the range                
of situations to which CFAA applies.  
 
Before CFAA liability can result, the actor must try to gain, or exceed, access to a “protected                 
computer.” The CFAA gives a non-exhaustive list of what can qualify as a protected computer.               
Subsequent interpretation has shown that protected computer is given a quite expansive            
definition. Courts have deemed that cell phones are considered computers under the CFAA;             
further, given cell phones typical uses, i.e., interstate commerce or communication, they would             
also be considered protected computers. In determining that cell phones count as computers,             19

the court looked at the facts that cell phones keep track of the number of incoming/outgoing                
calls, i.e., “performing logical, arithmetic, or storage functions” under the CFAA. Further, the             
court emphasized that the cell phone used “software” as in integral part of its function.  
 
Courts tend to be particularly expansive in their interpretation of the statute when the facts of the                 
case implicate a public safety concern. In United States v. Mitra, the court's interpretation              
stretched the CFAA’s transmission requirement to include sending out a radio signal. The radio              
signal was used to interfere, via jamming the signal, with the dispatching station's function for               
the local police department and 911 call center. The CFAA’s transmission element requires the              
transmission of “a program, information, code, or command,” to trigger CFAA liability. The             
transmission definition expands, more liberally, when public safety is compromised; i.e., Mitra            
compromising the 911-call-centers function by way of a radio signal.  
 
Another case analyzed whether information transmitted without authorization need specifically          
to be “malicious” to constitute a CFAA violation. Fink v. Time Warner Cable found that the CFAA                 
does not require the information transmitted to be malicious for the actor to incur liability. Here,                20

Time Warner Cable remotely accessed their customers computers to transmit a “reset packet”             
to prevent undesired functions by way of throttling peer-to-peer file sharing. The reset packet              
had no malicious intent, but the unauthorized access and transmission alone were sufficient to              
violate the CFAA, and meet the CFAA’s damage requirement by customers claiming the             
services they purchased were diminished by the reset packages. 
 
Blocking access to public safety services swayed the court in Mitra to apply the CFAA;               
subsequent courts have furthered the analysis and said blocking access to websites by means              
of denial of service attacks, or DDoS attacks. In dealing with DDoS attacks against websites,               
the court focuses on the “intent to cause damage” provision of the CFAA. Defendant Carlson               21

directed thousands of emails at a single email address to try and compromise the function of the                 

19 See, United States v. Kramer, 631 F.3d 900 (8th Cir. 2011). 
20 See, Fink v. Time Warner Cable, 810 F. Supp. 2d 633 (S.D.N.Y. 2011). 
21 See, United States v. Carlson, No. 05-3562, 209 Fed.Appx. 181 (3d Cir. 2006).  
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website. The court found Carlson was aware of, and motivated by, the potential damage that his                
actions could cause and found him in violation of the CFAA. In an analogous case, the                
defendants attempted to disrupt the operations of a business by directing “swarms” of phone              
and email messages at their respective addresses. The concentrated attacks at a business’s             22

personal accounts were methods “that diminish[ed] the plaintiff’s ability to use data or a system .                
. . causes damage,” and violates the CFAA. The courts have broadened the definition of               
“hacking” by adding CFAA liability for blocking access to services or platforms.  
 
Hacking under the CFAA has even been defined to include using a website’s services in a way                 
that violates the owner’s terms of service---as long as the violator has been adequately warned               
by the website’s owner. Defendant Vachami was violating Facebook’s Terms of Use            23

Agreement by sending automated messages to Facebook users and received a cease and             
desist letter regarding his actions. By continuing to violate the Terms of Use Agreement, the               
court concluded Vachami knowingly “exceeded authorized access” and violated the CFAA. By            
classifying this behavior as hacking under the CFAA, the court actually cabined a previous              
ruling. Later overturned, the lower court in United States v. Drew held that simply violating a                
website’s Terms of Service, analogous to Facebook’s Terms of Use Agreement, and causing             
damage constituted hacking under the CFAA without the need for the website’s owner to warn               
the defendant.  24

 
When it comes to computers that do not have terms of service that the user assents to, there is                   
no CFAA liability if the user discovers, then exploits, a system vulnerability, as long as the user                 
did not “circumvent any security protocols” programmed into the computer. In the interesting if              
unpublished case United States v. Kane, the defendant discovered that a electronic poker             
machine had a flaw in its software that allowed him to push a series of buttons in a particular                   
order and cause the machine to declare him the winner, resulting in a windfall of earnings. The                 25

court agreed with prosecution in deeming the electronic poker machine a “protected computer,”             
but would not extend CFAA liability to defendant due to his lack of circumventing, or “traditional                
hacking.”  
 
Notably, CFAA has no research exception. Thus, security researchers attempting to discover            26

potentially dangerous security flaws in protected computers can, in theory, be prosecuted using             
the full weight of the CFAA. This stands in contrast to other federal law. The Digital Millennium                 
Copyright Act (DMCA), the law protecting circumventions of copyright protections on digital            
mediums, has an expressly carved out research exception; specifically, for encryption research.            

22 See, Pulte Homes, Inc. v. Laborers' Int'l Union of N. Am., 648 F.3d 295 (6th Cir. 2011). 
23 See, Facebook, Inc. v. Power Ventures, Inc., 844 F.3d 1058 (9th Cir. 2016). 
24 See, United States v. Drew, 259 F.R.D. 449 (C.D. Cal. 2009). 
25 United States v. Kane, No. 2:11-cr-00022-MMD-GWF, 2015 U.S. Dist. LEXIS 177544 (D. Nev. Dec. 16, 
2015). (Unpublished cases have limited precedential effect.).  
26 See, Derek E. Bambauer & Oliver Day, The Hacker’s Aegis, 60 Emory L.J. 1051, 1105 (2011). 
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The DMCA exempts encryption researchers who, “circumvent a technological measure for the            
sole purpose of . . . performing the acts of good faith encryption research.”  27

 
While the CFAA is perhaps the best known anti-hacking statute, it is hardly the only law or                 
standard to address computer security. Additional laws make roughly the same assumptions as             
the CFAA. For example, at an international level, the Budapest Convention on Cybercrime             
defines a cyber crime of “illegal access,” i.e., “the access to the whole or part of any computer                  
system without right.” While it does not have a stated definition of hacking, the Federal Trade                28

Commission has developed a series of investigations and complaints involving inadequate           
security. Where a company’s security practices fall sufficiently short of best practice, the FTC              
pursues the company under a theory of “unfair or deceptive practice.” These proceedings             
invariably involve the exposure of personal information due to inadequate security protocols and             
envision hacking in the same way as the CFAA.  29

 
C. Applying CFAA to Adversarial ML 
 
In this final section, we attempt to apply the language and interpretation of the CFAA to a                 
specific set of case studies. These case studies are hypothetical but grounded in actual              
research. Again, as we describe above, adversarial ML is subject to certain limitations related in               
part to the research context. Here we assume for the sake of argument that techniques of                
adversarial ML can be transferred into real world settings.  
 
Planting adversarial sound commands in ads. A perpetrator of intimate partner violence buys             
a local television advertisement in the jurisdiction he suspects his ex now resides. Embedded in               
the ad is an adversarial sound input that no person would recognize as meaningful. The attack                
causes his ex’s personal assistant in range of the TV to publish her location on social media.  
 
Causing a car crash by defacing a stop sign to appear like a speed limit. An engineer                 
extensively tests the detector used by the driverless cars company where she works. She              
reports to the founder that she’s found a way to knowingly deface a stop sign to trick the car into                    
into accelerating instead of stopping. The founder suspends operations of his own fleet but              
defaces stop signs near his competitor’s driverless car plant. A person is injured when a               
competitor driverless car misses a stop sign and collides with another vehicle.  
 
Shoplifting with anti-surveillance makeup. An individual steals from a grocery store equipped            
with facial recognition cameras. In order to reduce the likelihood of detection, the individual              
wears makeup she understands will make her look like another person entirely to the machine               
learning model. However, she looks like herself to other shoppers and to grocery store staff.  
 

27 Digital Millennium Copyright Act of 1988, 17 U.S.C.S. § 1201 (Lexis 2018). 
28 The authors would like to thank Jesse Woo for furnishing this example.  
29 See, Daniel J. Solove & Woodrow Hartzog, The FTC and the New Common Law of Privacy, 114 
Columbia Law Review 583 (2014).  
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Poisoning a crowd-sourced credit rating system. A financial start up decides to train an ML               
model to detect “risky” and “risk averse” behavior so as to assign creditworthiness scores. A               
component of the model invites internet users to supply and rate sample behaviors on a scale                
from risky to risk averse. A group of teenagers poison the model by supplying thousands of                
images of skateboarders and rating them all as risk averse. One teenager from the group whose                
social network page is full of skateboarding pictures secures a loan from the start up and later                 
defaults. 
 
Data inversion across international borders. A European pharmaceutical company trains and           
releases a companion model with a drug it produces that helps doctors choose the appropriate               
dosage for patients. The model is trained on European data but subsequently released to              
doctors in the United States. A malicious employee in the U.S. with access to the model uses an                  
algorithm to systematically reconstruct the training set, including personal information.  
 
There is a case to be made that the CFAA could apply to each of these scenarios. The                  
adversarial sound in the first scenario could constitute the “transmission” of a “command” to a               
“protected computer,” i.e., the victim’s phone. Assuming the revelation of the victim’s location             
leads to physical harm, perhaps in the form of violence by the perpetrator, the damage               
requirement of CFAA has been satisfied. Similarly, by defacing the stop sign, the malicious              
competitor can be said to have caused the transmissions of “information”---from the stop sign to               
the car---that led to a public safety risk. In both instances, had the attacker broken into the                 
phone or car by exploiting a security vulnerability and altered the firmware or hardware to cause                
the precise same harm, the CFAA would almost certainly apply.  
 
On the other hand, a perhaps equally strong case could be made that CFAA does not apply. In                  
neither scenario does the defendant circumvent any security protocols or violate a terms of              
service. The transmission of an adversarial sound seemingly does not cause damage without             
authorization to a protected computer. Rather, it causes damage to a person through an              
authorized mechanism---voice control---of a protected computer. With respect to the driverless           
car scenario, it feels like a stretch to say that minor changes to the visual world that a sensor                   
may come across constitute the “transmission” of “a program, information, code, or command”             
on par with a denial-of-service attack. Regardless, there is again arguably no damage to the               
detector “without authorization” as required under Section 1030(a)(5)(A).  
 
However a court comes to characterize the driverless car scenario, the same logic arguably              
applies to the shoplifter who evades facial recognition---at least for purposes of the CFAA. Like               
the founder who defaces the stop sign to mislead the car’s detector, the shoplifter who alters her                 
face to mislead the facial detector has arguably transmitted information purposely to trick the              
grocery store into misperceiving her so she can steal. Obviously there are differences. The              
founder causes physical harm, the shoplifter financial. The founder has no right to alter a stop                
sign whereas the shoplifter has a right to apply makeup to her own face. But from a CFAA                  
perspective, the two situations feel closely analogous.  
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The example of mistraining the credit rating system is similarly ambiguous. From one             
perspective, the teenagers are exploiting a flaw in the design of the system in order to embed a                  
trojan horse in the form of a correlation between skateboarding and creditworthiness. Certainly if              
the group circumvented a security protocol and changed the valence of skateboarding by hand              
their actions would fall within the scope of the CFAA. From another perspective, however, the               
teens were just playing by the rules---however misconceived. The state or start up could no               
more prosecute or sue them under CFAA than the designer of a flawed poker machine in Kane                 
that paid out every time a specific sequence is entered.  
 
Resolution of the final scenario depends, once again, on whether tricking a system into              
divulging private information is the same as hacking into the system to steal that information.               
Presumably the European pharmaceutical company---beholding to strict EU law---did not design           
the model anticipating exfiltration of data. But nor did the perpetrator access the model without               
authorization. He merely queried the model in surprising way.  
 
Part IV: What’s At Stake 
 
To sum up the argument thus far: Contemporary law and policy continues to conceive of               
hacking as breaking into or disabling a computer. Devices increasingly leverage machine            
learning, and potentially other techniques of artificial intelligence, to accomplish a range of             
tasks. These “smart” systems are not so smart that they cannot be tricked. A burgeoning               
literature in computer science is uncovering various techniques of adversarial machine learning            
that, at least in experimental settings, are capable of misleading machines and even forcing              
dangerous errors. What a comparison between the leading anti-hacking law and adversarial            
machine learning reveals is ambiguity. It simply isn’t clear how or when the CFAA or similar laws                 
applies to “tricking” a robot as opposed to “hacking” it. This ambiguity has a number of                
potentially troubling consequences, which this Part now explores. 
  
A. Line-drawing and overreach 
  
Our first concern is that line-drawing problems will lead to uncertainty, which in turn could fuel                
prosecutorial overreach. The CFAA already faces criticizing for its hazy boundaries, and both             30

companies and prosecutors have pushed the envelope in arguably problematic ways. A            31

thoughtless application of CFAA to adversarial machine learning could exacerbate the problem            
by providing the CFAA with a dangerous new scope.  
  
To illustrate, consider again the problem with drawing a line between subtly defacing a stop sign                
to make it appear like a yield sign and subtly altering one’s makeup to fool facial recognition. It                  
seems plausible enough that a prosecutor would bring a CFAA violation in the former case and,                
further, that a court would permit the state to go forward. It may make intuitive sense to a judge                   

30  
31  
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that providing false inputs to car detectors in order to disrupt operations is analogous to               
transmitting malicious code or engaging in a denial of service attack. Coupled with the tendency               
of courts to be more solicitous of the state in CFAA cause involving a public safety hazard, we                  
can readily imagine a judge blessing the state’s CFAA theory. 
  
So what of the latter case? How does a court that decides for the state when the defendant                  
tricked a robot car then turn around and decide against it when the defendant changes her                
appearance to trick an AI-enabled camera in various contexts? The line cannot be that one               
intervention can cause physical harm and the other does not. Tricking a car will not always                
cause harm, and fooling facial recognition in theory could—for example, in our shoplifter             
example. Moreover, the CFAA does not require harm to flow from unauthorized access if, as               
often, the protected computer at issue belongs to the government and is using in the               
furtherance of security. Thus, wearing makeup at the airport with the intent not to be recognized                
by TSA cameras could rise to a CFAA violation, at least in the wake of a precedent saying                  
holding that defacing a stop sign with the intent that it not be recognized by a driverless car                  
does violate CFAA.  32

 
Note that the CFAA not only punishes the act of hacking, but it also punishes any “attempted                 
offense” that “would, if completed” cause damage or loss. This attempt provision also aligns              
oddly with adversarial ML. Automated attempts to locate vulnerabilities in protected computers            
and, where present, exploit those vulnerabilities are clearly attempts for purposes of CFAA. But              
what of wearing anti-surveillance makeup all day, in a variety of settings? And does the person                
who defaces a stop sign “attempt” to attack each and every car that passes, even if a human is                   
at the wheel? These too remain open questions.  
  
B. Chilling research 
  
Our second concern flows from the first. If courts interpret the CFAA too broadly in the context                 
of adversarial ML, then researchers may fear running afoul of the CFAA—which has no              
research exception—when testing real systems for resilience. The case that CFAA overreach            
chills security and other research has already been made repeatedly. Researchers may fear to              33

compromise proprietary systems or scrape digital platforms for data even if it is clear that their                
purpose is not malicious. The CFAA has a private cause of action and firms may still have an                  
incentive to chill such research to avoid embarrassment. There are safety valves—such as the              
requirement of harm for private litigants—but the threat of lawsuit alone could suffice to              
dissuade some research. 
  

32 Law enforcement may indeed want facial recognition avoidance to constitute a crime. But our intuition is 
that most would see facial recognition avoidance as a reasonable means by which to preserve privacy 
and liberty interests, and in any event of a different order from tricking a vehicle into misperceiving a road 
sign.  
33  
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Thus, our argument is not one of kind but of degree. As noted in the Obama White House report                   
on AI, by the AI Now Initiative, and by the U.S. Roadmap to Robotics, outside researchers                34 35 36

have a critical role in examining AI systems for safety, privacy, bias, and other concerns. The                
community is relying upon the ability of impartial individuals within academia, the press, and civil               
society to test and review new applications and independently report on their performance.             
Should courts come to expand CFAA’s ambit to include manipulation of AI, including for testing               
purposes, the result would be to remove an important avenue of AI accountability. 
  
C. Incentive misalignment 
  
The first two concerns deal with too broad an interpretation of hacking. The last problem in ways                 
deals with the reverse: If adversarial ML is not hacking, then do firms who release AI-enabled                
produces and services have any legal obligation to ensure that these systems are resilient to               
attack? As alluded to above, the CFAA is not the only anti-hacking law or policy to assume a                  
particular mental model. The FTC also requires products and services to employ reasonable             
measures against hacking. If it is too easy to compromise a system, then the FTC can                
bring—and repeatedly has brought—complaints against the firms that make those systems. 
  
Tricking a robot can sometimes accomplish functionally the same ends as hacking it. Thus, an               
adversary might “steal” private information by hacking into an AI-enabled system or by reverse              
engineering its training data. Similarly, an adversary could temporarily shut down a system             
through a denial of service attack or by poisoning its training data to make the system suddenly                 
useless in one or more contexts. To the extent that the prospect of an FTC enforcement                
proceeding for inadequate security incentivizes firms to take basic precautions against attack,            
we might worry that the failure of the Commission to envision susceptibility to adversarial ML as                
akin to poor security would under-incentivize companies to build robust systems. 
  
It is fair to point out a potential tension here. How could we be arguing, on the one hand, that it                     
is dangerous to widen the scope of hacking to encompass adversarial ML when it comes to the                 
threat of prosecution or litigation, but also dangerous not to when it comes to security               
standards? There may be a tension here. But note that the FTC and other bodies are not limited                  
to enforcing security under broad standards such as “unfairness and deception.” The FTC could              
create a separate category of unfairness for inadequate resilience to known adversarial            
machine learning techniques, without committing to the idea that tricking is hacking. 
  
Conclusion 
  
Computer security is undergoing if not a paradigm shift, then a significant evolution. Computer              
systems continue to be a target for malicious disruption and the exfiltration of data. As               
contemporary applications increasingly leverage machine learning and other techniques of          

34  
35  
36  
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artificial intelligence to navigate the digital and physical world, these systems present new             
concerns as well. Recent research, including by some of the authors, demonstrates how the              
added affordances of AI also entail novel means of compromising computers. Researchers            
have shown in experimental settings that machine learning can be misdirected during both             
inference and training and that training data can sometimes be reconstructed. In short, robots              
can be tricked. 
  
Collectively, the prospect of adversarial machine learning may require law and policy to undergo              
a significant evolution of its own. Contemporary anti-hacking and security law assumes hacking             
to involve breaking into or temporarily incapacitating a computer with code. The misalignment             
between the early understanding of hacking and today’s techniques creates ambiguity as to             
where and how the law applies. This ambiguity is dangerous to the extent that it invites                
prosecutorial overreach, chills research, or leads to underinvestment in hardening measures by            
firms releasing ML-enabled products and services. 
  
Ultimately it is up to courts, policymakers, and industry to come to grips with the prospect of                 
tricking robots. Our role is not to dictate a precise regulatory framework. We do have a few                 
recommendations, however, that follow from our concerns. We recommend clarifying the CFAA            
so as to cabin prosecutorial discretion. We recommend clarifying the CFAA and related laws to               
exempt research into AI resilience so we can continue to test systems for safety, privacy, bias,                
and other values. And we recommend incentives for firms to build AI systems that are more                
resilient against attack, perhaps in the form of Federal Trade Commission scrutiny should a firm               
release that cyber-physical system that is too easy (whatever that comes to mean) to trick. This                
is, of course, only the beginning of the conversation. We very much look forward to the thoughts                 
of other experts. 

18 


